p-group, metabelian, nilpotent (class 3), monomial
Aliases: C42⋊6C8, C43.5C2, C42.41Q8, C42.453D4, C4⋊C8⋊5C4, C4.1(C4×C8), C4.36C4≀C2, C4.22(C4⋊C8), C4.1(C8⋊C4), (C2×C42).41C4, (C2×C4).49C42, C42.250(C2×C4), (C22×C4).634D4, (C2×C4).65M4(2), C2.1(C42⋊6C4), C22.9(C22⋊C8), C42.12C4.3C2, C23.134(C22⋊C4), (C2×C42).1024C22, C2.5(C22.7C42), C22.17(C2.C42), (C2×C4).68(C2×C8), (C2×C4).155(C4⋊C4), (C22×C4).462(C2×C4), (C2×C4).368(C22⋊C4), SmallGroup(128,8)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42⋊6C8
G = < a,b,c | a4=b4=c8=1, cac-1=ab=ba, cbc-1=b-1 >
Subgroups: 168 in 104 conjugacy classes, 48 normal (14 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, C23, C42, C42, C42, C2×C8, C22×C4, C22×C4, C22×C4, C4×C8, C22⋊C8, C4⋊C8, C2×C42, C2×C42, C2×C42, C43, C42.12C4, C42⋊6C8
Quotients: C1, C2, C4, C22, C8, C2×C4, D4, Q8, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), C2.C42, C4×C8, C8⋊C4, C22⋊C8, C4≀C2, C4⋊C8, C22.7C42, C42⋊6C4, C42⋊6C8
(2 22 32 12)(4 24 26 14)(6 18 28 16)(8 20 30 10)
(1 21 31 11)(2 12 32 22)(3 23 25 13)(4 14 26 24)(5 17 27 15)(6 16 28 18)(7 19 29 9)(8 10 30 20)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
G:=sub<Sym(32)| (2,22,32,12)(4,24,26,14)(6,18,28,16)(8,20,30,10), (1,21,31,11)(2,12,32,22)(3,23,25,13)(4,14,26,24)(5,17,27,15)(6,16,28,18)(7,19,29,9)(8,10,30,20), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)>;
G:=Group( (2,22,32,12)(4,24,26,14)(6,18,28,16)(8,20,30,10), (1,21,31,11)(2,12,32,22)(3,23,25,13)(4,14,26,24)(5,17,27,15)(6,16,28,18)(7,19,29,9)(8,10,30,20), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32) );
G=PermutationGroup([[(2,22,32,12),(4,24,26,14),(6,18,28,16),(8,20,30,10)], [(1,21,31,11),(2,12,32,22),(3,23,25,13),(4,14,26,24),(5,17,27,15),(6,16,28,18),(7,19,29,9),(8,10,30,20)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)]])
56 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | ··· | 4L | 4M | ··· | 4AH | 8A | ··· | 8P |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 1 | ··· | 1 | 2 | ··· | 2 | 4 | ··· | 4 |
56 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | - | + | |||||
image | C1 | C2 | C2 | C4 | C4 | C8 | D4 | Q8 | D4 | M4(2) | C4≀C2 |
kernel | C42⋊6C8 | C43 | C42.12C4 | C4⋊C8 | C2×C42 | C42 | C42 | C42 | C22×C4 | C2×C4 | C4 |
# reps | 1 | 1 | 2 | 8 | 4 | 16 | 1 | 1 | 2 | 4 | 16 |
Matrix representation of C42⋊6C8 ►in GL4(𝔽17) generated by
1 | 4 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 4 |
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 4 | 0 |
0 | 0 | 0 | 13 |
9 | 0 | 0 | 0 |
4 | 8 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 16 | 0 |
G:=sub<GL(4,GF(17))| [1,0,0,0,4,16,0,0,0,0,1,0,0,0,0,4],[16,0,0,0,0,16,0,0,0,0,4,0,0,0,0,13],[9,4,0,0,0,8,0,0,0,0,0,16,0,0,1,0] >;
C42⋊6C8 in GAP, Magma, Sage, TeX
C_4^2\rtimes_6C_8
% in TeX
G:=Group("C4^2:6C8");
// GroupNames label
G:=SmallGroup(128,8);
// by ID
G=gap.SmallGroup(128,8);
# by ID
G:=PCGroup([7,-2,2,-2,2,2,-2,2,56,85,120,758,184,248,1684]);
// Polycyclic
G:=Group<a,b,c|a^4=b^4=c^8=1,c*a*c^-1=a*b=b*a,c*b*c^-1=b^-1>;
// generators/relations